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Abstract--A detailed study is presented of the instability of an initially motionless, ice-free and homo- 
geneous layer of salt water which is sufficiently cooled from above such that ice formation occurs. Basic 
state boundary layer profiles of temperature and salinity are computed by solving the corresponding Stefan 
problem numerically. At sufficiently large Rayleigh numbers, these profiles become unstable to both direct 
and double diffusive instabilities. Of fund&ental interest is the occurrence of a new type of oscillatory 
instability which is present when both temperature and salinity fields are destabilizing. Fastest growing 
modes are presented for the ice-water system. It is found that the wavelength of the dominant mode of 

convection increases with increasing ice thickness. 

1. INTRODUCTION 

WHEN A homogeneous, motionless liquid layer is 
cooled from above, thermal instabilities (Rayleigh- 
BCnard) give rise to convection if a critical vertical 
temperature difference is exceeded [l]. In a binary 
liquid, for instance, with both transport of heat and 
salt, convection may be caused by both direct buoy- 
ancy instabilities and double diffusive instabilities. 
The latter instabilities occur when the stratification of 
the basic (motionless) state is stable. Two regimes of 
double diffusive instabilities are known. In the diffus- 
ive regime, heat is the destabilizing component, 
whereas in the finger regime salt is the destabilizing 
component [2]. 

In this paper, we consider the linear stability of a 
layer of salt water which is cooled from above such 
that freezing occurs. We are motivated by obser- 
vations of large scale plumes in Arctic Seas. These 
plumes are thought to arise from processes at the air- 
sea interface [3, 41, where convection originates from 
an instability of temperature and/or salinity boundary 
layers. The salt flux is due to the formation of ice 
crystals if the temperature decreases below the freez- 
ing point. 

The configuration of the ice-seawater system has 
been studied both experimentally and theoretically by, 
among others, Foster [558]. He found experimentally 
[7] that when the salinity is smaller than 24.7 (in the 
case when the freezing point temperature is smaller 
than the temperature of maximum density) the layer 
is (thermally) stable. However, as soon as ice formed, 
convection in the form of elongated cells developed 
due to the instability of the salt boundary layer. For 
salinities larger than 24.7, ice forms on a layer already 
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in motion due to thermal instabilities, but the salt flux 
at the ice-water interface induces convection, which 
soon dominates the flow pattern. 

Foster [6] studied the onset of the haline convection 
theoretically for three particular cases of the surface 
salt flux which defined a particular basic state salt 
distribution. Although he found reasonable agree- 
ment with experiments (e.g. with respect to the spatial 
scale of convection), the results of his stability analysis 
are limited because the model does not take into 
account the solidification of the ice and the heat trans- 
port in the ice-water system. 

In this paper, a more general study of this initial 
development of convection is performed. In Section 
2, the formulation of the problem of the cooling of an 
initially motionless layer of salt water from above is 
given. If the temperature at the air-water interface 
decreases below the freezing temperature, ice for- 
mation occurs. Section 3 contains results on this initial 
ice formation and subsequent stages by solving the 
governing Stefan problem. This leads to non-linear 
temperature and salinity profiles coupled to the ice 
thickness. The linear stability of these pr&les is stud- 
ied in Section 4 using standard numerical kchniques. 

From the fundamental fluid mechanics poiti of 
view, we extend work on double diffusive instabilities 
[9] by considering non-linear (time-dependent) basic 
state temperature and salinity profiles induced by 
cooling and solidification. The main new fundamental 
result is that oscillatory instabilities can occur in 
regions where both salt and heat are destabilizing. 
This instability has its origin in the different boundary 
layer thicknesses of temperature and salinity; the ice 
formation itself is only important in that it causes the 
formation of the different boundary layers. A descrip- 
tion of the physical mechanism of this instability is 
presented in Section 5. 
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NOMENCLATURE 

Biot number, equation (13) 
specific heat [J kgg’ K ‘1 
diffusivity of salt [m’ s ‘1 
gravitational acceleration 
[m ss’] 
layer thickness [m] 
ice thickness [m] 
dimensionless wavenumber 
latent heat of fusion [J K kg ‘1 
dimensionless wavenumbers 
Lewis number, equation (13) 
freezing point depression [K] 
normal to ice-water interface 
pressure [N m ‘1 
Prandtl number, equation (13) 
thermal Rayleigh number, equation 

(13) 
solutal Rayleigh number, equation 

(13) 
salinity 
constant salinity in the ice 
temperature [‘Cl 
temperature of ambient air [“Cl 
freezing temperature [“Cl 
velocity vector [m s-‘1 
vertical velocity [m s ‘I. 

Greek symbols 
thermal expansion coefficient [K ‘1 
solutal expansion coefficient 
temperature of the ice [“Cl 
ice temperature at interface [iC] 
thermal diffusivity [m’ ss’] 
thermal conductivity [J mm ’ s ’ K -‘I 
viscosity [kg m-’ s ‘1 
density [kg m ‘1 
dimensionless complex growth factor 
heat transfer coefficient [J m * sm’1 
heat transfer coefficient [J mm-’ s- ‘1 
Stefan number, equation (13). 

Subscripts 
a air 
C critical 
i ice 
W water 
.y, y, z, t partial derivatives of X, _r, z and t 
72 of the ambient fluid. 

Superscripts 
partial derivative of z 
basic state 
perturbation. 

From the laboratory point of view we find that 
due to ice formation vigorous convection develops 
instantaneously (in accordance with Foster’s exper- 
iments [7]). The fastest growing mode is a direct (non- 
oscillatory) mode ; the spatial scale of this mode 
increases with increasing ice thickness. The associated 
spatial scale is much smaller than the corresponding 
scale of the instability of the temperature boundary 
layer. Although this study is somehow related to insta- 
bilities induced by solidification (see e.g. ref. [lo]) in 
binary liquids, we focus only on convective insta- 
bilities and do not consider interfacial tension effects 
(and the associated morphological instabilities). 

2. FORMULATION 

Consider a horizontally unbounded layer of salt 
water of thickness H (Fig. 1 (a)). The layer is bounded 
below by a rigid wall and above by ambient air. The 
air temperature TA far above the air-water interface 
is assumed to be prescribed. The liquid temperature T 
and salinity S far from the gas-liquid interface are 
constant and equal to T, and S,, respectively. Both 
T and S influence the density p field within the water 
through the equation of state : 

P =P.cl+J’c~>s)), (1) 

where,f’( r, S) is a known function and,f( T, . S, ) = 0. 
With the restriction that density differences remain 

small with respect to the reference density pm, the 
Boussinesq approximation can be applied. With this 
approximation, the equations describing the motion 
within the liquid are given by 

v*v=o @a) 

px(v,+v*Vv) = -vp 

-.mp,(l +,ffT s))+@v G’b) 

T,+v*VT= u,V’T (2c) 

S,+v*VS = DV’S. (Id) 

ln these equations, K, = A,/(prCp,) is the thermal 
diffusivity of water (where Cp, is the heat capacity 
and I, the thermal conductivity), p the dynamic vis- 
cosity and D the molecular diffu.sivity of salt in water. 
All these properties are assumed to be constant. Fur- 
thermore, v = (u, u, w)’ is the velocity vector, p is the 
pressure and g is the acceleration due to gravity (e3 is 
the unit vector in the z-direction). 

Boundary conditions at the lower boundary 
2 = -H are those for a no-slip wall for which the 
salinity and temperature are constant. Hence, 

z= -H: v=O,T=T,,S=S,. (W 

At the upper (planar) air-water interface, the interface 
is stress free, impervious and the heat flux over the 
interface is proportional to the temperature difference 
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FIG. 1. Geometrical set-up of the ice-free system (a) and the ice-water system (b) 

between the interface and the air temperature TA. 
Hence, 

z=o: U, = UZ = M’ = 0, 

-L,T. = 0,,(T-T,), S, = 0, (3b) 

where uwa is an interfacial heat transfer coefficient. 
If TA is smaller than the freezing temperature of 

water (at salinity S,), ice formation occurs; let the 
ice-water interface be located at z = -h(x, y, t) (Fig. 
l(b)). When an ice layer of finite thickness is present, 
the boundary conditions (3b) are no longer valid. 
Together with the diffusion of heat in the ice which 
determines the ice temperature 9, i.e. 

Y[ = K,V29, (4) 

where K, (K, = Q(&‘,,)) is the thermal diffusivity of 
ice, other boundary conditions are necessary to 
describe the evolution of the system. At the ice-water 
boundary, z = -h(x, y, t). these equations are (see 
e.g. ref. [lo]) 

plv*n = (P, -pJN_‘h, (5a) 

vat, = v.t* = 0 (5b) 

T=9= -nqS (5c) 

n.(-j.,VS+&,,VT) = p,LN ‘h, (5d) 

p,,Dn.VS = p,h,Nml(S-S,) W 

where t,. tZ are both tangents and n is the (normalized) 
normal to the ice-water interface given by 

t, =(l,O,h,),t, =(O,l,h.,.),n=N-‘(-h,,-h,.,l). 

(5f) 

Furthermore, N = (1 + h: +A:)"* and Sr is the con- 
stant salinity in the ice, which we will take to be zero ; 
diffusion of salt in the ice is neglected. At the ice-air 
interface, the heat flux is again proportional to the 
difference (with interfacial heat transfer coefficient G,,) 
between the ice temperature at the interface and the 
air temperature T,. This gives 

z = 0: -i,3; = g,,($- T,). (W 

Equation (Sa) expresses the conservation of mass, pi 
being the constant density of the ice. Equations (5b) 
express no-slip conditions, equations (5~) model con- 
tinuity of temperature at the interface and&he freezing 
point depression (mr > 0) and the equations (5d) and 
(5e) are the heat and salt balances at theqnterface. 
respectively : L is the latent heat of fusion of ice ser 
unit mass. 

Together with given initial conditions, the evolution 
of the system is described for ice-free conditions by 
the equations (l), (2) and (3) and when ice is present 
by the equations (l), (2), (3a), (4) and (5). 

3. PLANAR ICE GROWTH IN A MOTIONLESS 
LIQUID 

3.1. hmulation 

If, initially, the liquid is ice-free and motionless. 
there is only diffusion of heat and salt. Moreover. if 
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both the initial conditions and the boundary con- 
ditions for temperature and salinity are independent 
of x and J’, these fields will only be functions of z and 
f. For v = 0, equations (l)--(3) reduce to 

PZ = --P,g(l +f(r, s)) 

T, = K, T;, 

S, = OS,;, 

with boundary conditions 

(6a) 

(6b) 

(6~) 

3 = 0: -&T. = asd(T-T,),S, = 0 (6d) 

z = -H: T= T,.S= S,. (be) 

For general initial conditions 

f = 0 : T = T, (;), S = SW (z) (60 

these equations have to be solved numerically. 
However, in some special cases, in particular if H + 
oc, T,(z) = T,, S,(z) = S,, a similarity solution of 

the equations (6) exists (cf. ref. [I 11, p. 71ff). 
If T* < -r&9, < T, the temperature at the air- 

water interface will at some time, the freezing time t,, 
reach the equilibrium freezing point Tf = -m$,. 
This freezing time tf increases with increasing salinity 
S, because in that case the freezing temperature 
decreases. The microphysical processes active to 
establish a thin layer of ice in a time interval [tr, t,+ At] 
are (at least) complicated. However, because we are 
interested in the change in temperature and salinity 
field due to a developing ice layer, a model which 
describes the initial growth is necessary. As under- 
cooling phenomena and the associated non-planar 
growth are outside the scope of this paper, only planar 
ice growth in a motionless liquid is considered. 

Initially, the thickness of the ice layer will be very 
small and therefore the associated Fourier number 
(Fo = k,t/h’) will be large. The temperature profile in 
the ice can therefore be approximated as 

3(Z, t) = A(t) +B(t)z. (74 

The coefficients A(t) and B(t) can be expressed as 
functions of the temperature of the ice-water interface 
(TJ through the boundary conditions (Sg) and the 
first of (5~). The result is 

A(t) = 
h(t)cr,,T,+A,T, 

2.1 + h(t)a,, 
Vb) 

If we substitute equations (7) into the boundary con- 
dition (5d) and approximate p, g pI, the equations 
determining the temperature and salinity fields within 
the liquid are given by (6b), (6c), (6e) and three other 
boundary conditions at the ice-water interface 
z = -h(t). which become 

T = -m,-S (84 

(8b) 

DS, = h,S. (8c) 

Mathematically, two of these boundary conditions 
serve to determine the salinity and temperature field, 
while a third boundary condition is necessary to solve 
for the unknown ice thickness h(t). 

At a later stage of ice formation, when the ice thick- 
ness is not small (but the liquid still remains motion- 
less), the full problem defined by equations (4), (6b), 
(6c), (6e), (5c), (5d), (5e) and (5g) must be solved. 
For this full problem a similarity solution also exists 
in a semi-infinite layer approximation (H-, cc) and 
o,, -+ cc (which implies 9 = TA at the air-ice inter- 
face). Following ref. [ 121, where a slightly different 
situation is treated, these solutions are given by 

T(z, t) = T, -cc,E$ 
( 

- +p * 
> 

(9b) 

S(*,t) = S,-a3Eg+;(Dt)y 2) (SC) 

h(t) = 2&P, (9d) 

where the constants tl,, . , Q (shown in the Appendix) 
are determined from the four boundary conditions 
(5c), (5d) and (5e). Characteristic for this solution is 
a constant salinity (S, - ~(~Erjb(c~/D’~‘)) at the ice- 
water interface and developing thermal and solutal 
boundary layers with length scales (rnc,t)“* and 
(nDt)“*, respectively. As can also be seen from 
expressions (9) the similarity solution requires some 
very special initial conditions at t = 0. It is therefore 
not possible to couple this solution to an arbitrary 
temperature and salinity profile before freezing starts. 

A basic technique to calculate the time-dependent 
basic state for general initial conditions is the Crank- 
Nicolson method using central (spatial) differences. 
This method is second order accurate in time and 
space. From t = 0 up to the freezing time tr, the equa- 
tions are linear and easily solved. During the initial 
stages of ice formation (where the ice temperature is 
linear in z), a new independent variable 4 = Z+ h(t) 
is introduced. This coordinate transformation trans- 
forms the problem into one for a time-independent 
boundary. At the bottom of the jiquid layer z = -H, 
the temperature and salinity fields remain constant in 
time. The transformed equations are non-linear and 
the non-linear system of algebraic equations emerging 
after discretization is solved by the Newton-Raphson 
method. Finally, when the full problem has to be 
solved during later stages of ice formation, a Landau 
transformation 4 = -z/h(t) is applied to transform 
the numerical problem into one for a time-inde- 
pendent boundary. 

We determined the necessary spatial and temporal 
numerical resolution to obtain sufficiently accurate 
numerical results by comparing computed fields with 
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the analytical solution (9) for the specific case 
T, = -3C, T, = PC, S, = 10. A time step dt = 1 
s and a spatial resolution dz = 0.75 mm give a four 
digit accuracy. This resolution is used in the com- 
putations below. 

3.2. Results 
Results are shown for T., = - 10°C T, = 1 C, 

S,=lO and initial conditions T,(z) = T,, 
S,(z) = S,. The other parameters have values as 
given in the Appendix. Up to the freezing time t,, the 
salinity remains constant and the temperature profile 
is easily solved numerically : this is the similarity solu- 
tion shown in ref. [l 11. The temperature distribution 
for three times t (in seconds) is shown in Fig. 2(a). At 
t = ff = 27.5 s, the air water temperature reaches the 
freezing temperature (Tr = -0.53”C) and ice for- 
mation starts. c 

At the transition we switch to the system of eqha- 
tions (7) (with ula = crwa) describing the initial ice 
growth. Although the numerical method to compute 
the initial stages of ice growth is salt and heat conserv- 
ing, the finite resolution introduces an error which 
is maximal at the transition from no ice to ice. By 
integrating the equations over the layer, the total salt 
and heat content was computed. The residues in the 
total salt and heat balance (both deficits) relative to 
the instantaneous heat and salt fluxes at the ice-water 
interface are no larger than 8% for this resolution, 
which is acceptable. 
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Temperature and salinity profiles are shown in Figs. 
2(&l) for three different ice thicknesses (or different 
times t > tJ. These clearly show that salt accumulates 
at the ice-water interface due to ice growth (advection 
of salt) and slow molecular diffusion. The relative 
increase of the amplitude of the salinity in the bound- 
ary layer is largest during the initial stages of ice 
growth, when the interface propagation velocity is 
large. 

For other initial salinities (only S, = 0 and 
S, = 35 are taken), the development of the ice-water 
interface is qualitatively similar. In Fig. 3 the propa- 
gation speed of the ice-water interface (h,) is shown 
as a function of ice thickness h for the three different 
initial salinities. In each case, h, = 0 at h = 0 (t = tf). 
This is due to the assumption that aWd = o,~, which 
implies that at t = tf the heat flux is continuous at 
the ice-water interface. For times t > t,, initially the 
propagation speed increases because the heat flux 
from the water (at the interface) is smaller than that 
through the ice. However, as time progresses the freez- 
ing temperature decreases because salt is accumulating 
at the interface. In addition, when the ice thickness 
increases, the temperature at the ice-air interface 
decreases because heat is supplied from below less 
efficiently. Both effects decrease the heat flux through 
the ice and thereby the propagation speed. In fresh 
water (S, = 0), the latter effect is the only cause of 
the decrease in propagation speed. 

The thicknesses of both the salt boundary layer and 
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FIG. 2. Transient development of the salt and temperature profiles before and after freezing has started ; 
S, = IO. T, = 1 C. T, = - IOC. (a) Before freezing. (b) h = 0.01 cm. (c) /I = 0.05 cm. (d) h = 0.5 cm. 
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the temperature boundary layer increase with S, > 0 
(at the same ice thickness). The salt concentration 
(relative to S,) at the ice-water interface decreases 
with increasing S,. Both results are related to the fact 
that the growth rate of the ice layer decreases with 
increasing S, (cf. Fig. 3). As it takes longer to reach 
a particular ice thickness for larger S,, the penetration 
depths of both (temperature and salinity) boundary 
layers are larger. More salt has been transported by 
diffusion and the interface concentration (relative to 
S,) is therefore smaller. 

4. LINEAR STABILITY PROBLEM 

4.1. Formulation 

Suppose that a temperature and salinity field T(z, t), 
.?(z, t) and ice thickness R(t) have been calculated 
numerically up to a certain time t*. Since the tem- 
perature near the ice-water boundary will decrease 
and the salinity will increase, the density may increase 
at the top of the water layer. Hence, this layer may 
become unstable to both double diffusive and direct 
buoyancy instabilities, depending on the the explicit 
form of the equation of state (1). 

To determine sufficient conditions for instability, a 
standard linear stability analysis is performed. Each 
dependent variable is expressed as the sum of the basic 
state and some arbitrary disturbance (denoted by a 
tilde) : 

iv, 3. T. s,pj(s,J..-_. t) = [O. 9, T, S,p)(z t) 

+(~,9,~,~,li}(,~.~,z,t) (lOa) 

h(r,,r, t> = I;(r) +l;(s,I’, q. (lob) 

Linearization in the primed quantities and non- 
dimensionalizing the emerging equations by scales H, 

HZ/~,,. K,,IH~ ~K,,!H’. T, and S,_ for length, time, 
velocity, pressure, temperature and salinity, respec- 
tively, leads eventually to the evolution equations for 
infinitesimally small disturbances. 

In a quasi-steady state approximation the basic 

state is ‘frozen’ at some time t*. It can be shown that 
growth factors computed with this approximation are 
only valid for small times z = t - t* [ 13, 141. The actual 
time interval of validity depends on the ratio of the 
time rate of change of the basic state and perturbations 
(the growth factors) and the approximation of the 
instantaneous growth factors becomes better if this 
ratio decreases (large growth factors). 

In this approximation, a normal mode approach is 
followed, i.e. the linearized equations admit solutions 
of the form 

{O,Q,T,9,p”}(x,y,z,t) = {c,9,&$p}(z, 

x exp (i(l,x+&y) +ot) (1 la) 

h^(x,y, t) = Xexp (i(l,x+I,.y)+crt). (1 lb) 

Here 0 is the complex growth factor and I,Y,lV are 
horizontal wavenumbers. If %(a) > 0 then the. per- 
turbations will grow and the basic state is unstable. 

Elimination of the pressure and horizontal vel- 
ocities finally leads to the following two-point bound- 
ary eigenvalue problem (where the primes indicate 
differentiation to z and k* = I’, + l;). On z E (-h, 0) : 

(124 

On:E(-I.--l;): 

II.“” - d’(aPr ’ + 2k’) + ir(k’ + ciPr_ ‘k’) = 

k’(RaJ+Ra, 2-j (12b) 

S’-S(crLC+/P) = LeuS, PC) 

T”- T(a+k’) = IVF: (W 

with boundary conditions 

,-=O: 9’= -Bi$ (12e) 

z = -h: 3 = T-/Q-X) = ms-h(m&,9,) 

(IN 
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,,’ = 16” = 0 tw 
Lr ‘Y-&S = h(Le ‘~2z+crS-~~J (12h) 

c oh = - iJ’ + r” + h(& - TZ_) (12i) 

== -1: iv=n”=T=S=O. (123 

In these equations several dimensionless parameters 
appear. These are the thermal Rayleigh number Ra,, 
the solutal Rayleigh number RaS, the Prandtl number 
Pr, the Lewis number Le, the Biot number Bi, the 
ratio of thermal conductivities of ice and water i,, the 
ratio of thermal diffusivities K, the Stefan number C 
and the freezing point depression coefficient m. These 
parameters are defined as 

i, = i,/i, K = lC,/K, Bi = CS,~ H/i, (13) 

where cx = (~?f/aT)]~,~ and fl = (;?fi~X?)]~,~. Note that 
these coefficients a and b depend on the vertical coor- 
dinate through the basic state profiles. The tem- 
perature perturbation in the ice can be solved 
explicitly (using (12a) and (12e)) to give 

S(z) = 9,,, 
(Bi+q)ed - (Bi-q)e4” 

(Bi+q)e”“-(Bi-q)ed’ 
(14) 

where 9,,, is the perturbation ice temperature at the 
ice-water interface and q2 = k2 + a’/~. Now 9,,, can be 
expressed into the other dependent variables through 
the first equation of (12f). Thereafter, the expression 
(14) can be used to eleminate 3 from the boundary 
condition (12i). This finally leads to an eigenvalue 
problem for the eigenvector (w, h, Z’, gT. 

The two-point boundary eigenvalue problem (12) 
was solved by standard continuation software for 
ODES, the AUTO [ 151 package. The system of equa- 
tions (12) is written as a system of first order auton- 
omous equations and treated as a bifurcation prob- 
lem. Eigenvalue curves (which are non-trivial 
solutions of these equations) can be easily detected 
and branches of eigenvalues can be traced through 
parameter space. When i, denotes any free parameter 
and u is the solution vector, the accuracy of AUTO 
was set at / i 1 /(I + 12.1) < lo-” and 1 u 1 /(l+ (u 1) < 
IO 6. Eigenvalue curves for a linear temperature and 
salinity profile compared favourably iyith those 
computed analytically by Baines and Gill [9]. 

4.2. Results 
In the linear stability analysis of the basic states, 

computed in the previous section, the time t* (at which 
these basic states are ‘frozen’) is treated as an 
additional parameter. We will only consider the case 

for which z and /r (and thereby Ra, and Ras) are 
constant. Other parameters are fixed and their values 
are given in the Appendix. Stability boundaries are 
shown for several ‘reduced’ problems by ‘deforming’ 
the basic states from those for linear temperature and 
salt profiles to those below growing sea-ice. This is 
done to clarify the relation between the unstable 
modes for these basic states and those considered by 
Baines and Gill [9]. 

For the most simple case 9 = !z = 0 ((12g, h) are 
dropped) and constant $ > 0, FZ < 0, we recover the 
case in ref. [9] but with a rigid top and bottom wall. 
For a fixed value of Ras, there are an infinite number 
of eigenvalues Ra, satisfying the eigenvalue problem 
at neutral stability [2]. The eigenfunctions of these 
modes can be distinguished by the number of zeroes in 
the vertical velocity. For Ra, = 0, these are stationary 
instabilities (the first eigenvalue being the classical 
RayleighhBCnard value Ra, = 1708). In Fig. 4(a), 
stability boundaries are shown for the first two modes 
in the Ras-Rmr plane. Solid lines correspond to 
stationary modes, dotted lines to oscillatory modes 
(each point corresponds to a minimum of a neutral 
curve). A positive value of Ra, corresponds to a desta- 
bilizing thermal field and a negative Ra, corresponds 
to a destabilizing salt field. Plots of the eigenfunc- 
tions at several marked points in Fig. 4(a) are shown 
in Fig. 5 for further reference. In these figures, 
p(T) = Ra,T(z) and p(s) = R&?(z) are plotted 
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(instead of T(Z) and S(Z)) to show each contribution 
to the density perturbation in the liquid. Also plotted 
are the total density perturbation p and the vertical 
velocity perturbation MI. For oscillatory modes, both 
real and imaginary parts of the eigenfunctions are pre- 
sented. The first modes for which the vertical velocity 
has no zeroes (Figs. 5(ax)) are more unstable than 
the second modes, which have one zero (Figs. 5(d-f)). 

In Fig. 4(b), more detailed stability boundaries for 
the first modes are given by drawn lines. In this figure. 
dashed lines mark changes in the number of unstable 
modes. There is only one unstable stationary mode in 

region I. In region II. there are two unstable stationary 
modes. In region III, an oscillating mode (travelling 
waves in both horizontal directions) is unstable. At 
the line X--V in the diagram, the frequency of these 
travelling waves tends to zero. In the eigenvalue plane, 
a bifurcation occurs and two stationary branches 
appear (corresponding to the two stationary unstable 
modes in region II). For one of these modes, the 
growth factor decreases and this mode becomes neu- 
tral on the curve X--Y. The other mode remains 
unstable as X-Y is crossed. 

The critical wavenumber k, along the curve Z-K 
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W is constant (k, = 3.12) and is larger than the value 
found for ‘slippery’ top and bottom walls (k, = 2.22 
[9]). This difference is well known from the single 
component Rayleigh-Benard instability [2]. If Rus 
(with fixed Ra,-) is decreased (more negative) from 
a point on the curve X--Z, k, increases whereas the 
eigensolution still extends over the whole liquid layer. 
This implies that the most unstable modes are long 
and narrow, which characterizes ‘salt fingers’. 

To study the influence of the (basic state) tem- 
perature and salinity boundary layer profiles, we con- 
sider next the case 9 = h = 0, but L?z and $ are now 
profiles calculated below the growing ice. The stability 
boundaries for the temperature and salinity field 
shown in Fig. 2(c) (ice thickness 0.5 mm) are presented 
in Fig. 6. The stability boundary Z-Win Fig. 6 is the 
modified stability boundary Z-Win Fig. 4(a). Criti al 
Rayleigh numbers have increased showing that ! he 
mode is more stable. The second vertical mode 
(branch R-Q-P in Fig. 4(a)) has changed into an 
oscillatory branch R-U, now occurring for negative 
Ras, and a stationary branch U-V. In addition, a third 
oscillatory branch Q-P appears. 

Again, eigensolutions are plotted in Fig. 7(a-f) at 
selected (labelled) points in Fig. 6. The critical wav- 
enumber k, is not constant along the branch X-Z (as 
it is in Fig. 4(a)), but increases with increasing 1 Ra,(. 
This can be seen by comparing Fig. 5(a) and 7(d). In 
the latter figure, the disturbances are more confined 
to the boundary layer, indicating a smaller spatial 
scale (i.e. larger k,). Along the branch X-W, the criti- 
cal wavenumber is nearly constant (k z 3.5). For this 
mode, the vertical velocity and temperature per- 
turbations extend over the whole layer, whereas the 
salinity perturbation is confined to the boundary layer 
(compare Figs. 7(e/f) with 5(b/c). 

It is interesting that oscillatory instabilities (R-U) 
are present in an area where both salt and temperature 
are destabilizing. The mechanism of this instability 
and its relevance for the ice-water system is discussed 
below. Along the branch R-U, the wavenumber is 
nearly constant (k E 6.0). At very large negative Ras 
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FIG. 6. Stability bou_ndaries for salt and temperature bound- 
ary layer profiles at h = 0.05 cm. but with the restriction that 
ail perturbation quantities vanish at the ice-water interface. 

another direct mode (not shown in Fig. 6) becomes 
unstable. Other eigenmodes (branches U-V and Q- 
P in Fig. 6) can be interpreted as mixed modes or 
‘boundary layer modified’ modes. Since these modes 
are irrelevant for the ice-water system (RaS < 0) we 
do not discuss them further. 

Next, the stability problem for the full ice-water 
mode1 (equations (12)) is considered. Results for the 
stability boundaries for & = 0.05 cm are shown in Fig. 
8. The results in Fig. 6 are only slightly modified. The 
stability has decreased due to the additional freedom 
of interface perturbations. No new instabilities are 
found. With respect to the eigenfunctions (not 
shown), the main difference is the disappearance of 
the steep gradients in salinity and temperature per- 
turbations near the ice-water interface. Otherwise, the 
eigenfunction structures resemble those in Fig. 7. 

5. DISCUSSION 

In this paper, the onset of convection due to double 
diffusive and direct instabilities below growing sea- 
ice is considered. The basic state temperature and 
salinity profiles below the ice are calculated by solving 
the appropriate Stefan problem for planar ice growth. 

Using the quasi-steady approximation and constant 
(Ra,, Ra,), stability boundaries are calculated. A new 
oscillatory instability is found in the region Ra, > 0, 
Ras <: 0 where both the basic state salt and tem- 
perature distribution are destabilizing. A description 
of the mechanism of this instability is attempted with 
the help of Fig. 9. Here, the spatial structures of the 
perturbations, corresponding to the eigenfunctions of 
Figs. 7(b) and (c), are shown over half an oscillation 
period. In Fig. 9(a) (start of the description), there is 
a small region 1 (indicated in Fig. 9(a)) where the 
vertical velocity perturbation is slightly negative. 
Fluid elements in this region are saltier than their 
environment and move downward. In region 2 (also 
indicated in Fig. 9(a)), fluid elements are lighter 
(warmer) than their environment and move upward 
(the salt perturbation is nearly zero). In region 2, 
advection of heat is larger than diffusion, thereby 
increasing the temperature perturbation and the ver- 
tical velocity (Fig. 9(b)). The region of positive ver- 
tical velocity expands upward and erodes region 1. As 
the velocities in region 1 reverse sign, the shalt per- 
turbation (dominated by advection) becomes negati& 
(Fig. 9(c)). Velocities in the transition region are very 
small and salt diffuses downward, increasing the den- 
sity at the top of region 2 (Fig. 9(d)). Thereby the 
velocities in region 2 decrease and eventually reverse 
sign (Fig. 9(e)). Due to advection of heat, the (nega- 
tive) temperature perturbation increases and thereby 
also the (negative) vertical velocities in region 2 (Fig. 
9(f)). Here, the cycle starts again with reversed sign. 

We now consider the relevance of these results for 
the ice-seawater system. Thereby we are restricted to 
constant !x and /?, which gives a restriction on the 
values of (T, . S,). In Fig. 10(a), the freezing point 
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curve and the curve of maximum density are shown 
in the (T, S) plane. For (TX, S,) in region I, cx P- 0 
and J -C 0 are approximately constant and the tem- 
perature boundary layer might become unstable 
before any freezing occurs. Tliis depends upon the 
critical Ra, number as the temperature profile evolves 
before freezing ; Ra,, 2 9.4 x 10’ at t = tf. For t < tr 
the neutral curve is shifted upwards and to the right. 
Hence for RaT < Ra,,, ice formation will occur in a 
motionless liquid. If RaT > Ra,, the ice-free layer is 
unstable and the theory formally does not apply, since 
the ice growth is affected by convection. 

For Ru, = 9 x 103, Rus = - 10’ and three different 
ice thicknesses h (associated with three different times 
at which the basic state is ‘frozen’), growth factors of 
the most unstable mode are shown in Fig. 10(b) as a 
function of wavenumber k. Since the growth factors 
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are very large, the quasi-steady approximation is jus- 
tified. The wavenumber with maximum growth (for 
which perturbation structures are plotted in Fig. 
IO(c)) decreases with increasing ice thickness (over 
the range considered). The magnitude of this wave- 
number and the density perturbation is mainly con- 
trolled by the buoyancy flux due to salt rejection. 
From Fig. 8, we observe that for Ra, = 9 x 103, the 
oscillatory mode is stable for h = 0.05 cm. Although 
this mode becomes unstable for h = 0.1 cm, the 
growth factors are orders of magnitude smaller than 

those shown in Fig. 10(b). The same is true for the 
direct mode, which is unstable for very large 1 It&. 

For (T,, S,) in region II and for which the salt 
concentration at the interface remains in region II, 
u < 0 and b < 0 are approximately constant. The ice- 
free layer is stable up to the freezing point and ice 
formation occurs in a motionless layer with Ra, < 0 
and Ra, < 0. In this case, there is only one direct 
unstable mode. The variation with ice thickness is the 
same as shown for the direct mode in Fig. 10(b), 
because growth factors for this mode hardly depend 
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on Ra,. For example, at h = 0.1 cm and Ras = - IO”, 
the values of maximum growth factor (T,,, and cor- 
responding wavenumber k,,, are (1.547 x 104, 123.9) 
and (1.545 x 104, 125.9) for Ra, = 9.0 x 10’ and 
Ra, = - IO’, respectively. 

Finally, for (T, , S,) in region III, the theory does 
not apply, because a is not constant over the liquid 
layer. In this case, the problem is more complicated 
due to the presence of a potentially stable layer sand- 
wiching the ice and an unstable layer. 

In physical situations where the theory is applicable 
(within the limits of the model), the initial devel- 
opment of convection is as follows. For a system with 
fixed Rayleigh numbers Ra, and Ras, there is a certain 
ice thickness (reached at a certain ‘onset’ time to) up to 

which the basic state temperature and salinity profile 
below the growing ice remains stable. A certain range 
in wavenumbers becomes unstable for times larger 
than to. Growth factors of these unstable modes are 
shown in Fig. 10(b) at certain fixed times t* > to. For 
times r = t--t* small compared to t*, these unstable 
modes will grow exponentially in time. This picture is 
valid as long as the amplitudes of the disturbances 
remain small and non-linear interactions can still be 
neglected. 

How do these results compare with experiments? 
As found by Foster about 25 years ago [7,8] the onset 
times are very small compared to typical times in 
which a layer of ice of reasonable thickness (l-10 cm) 
is grown. Also, the associated spatial scales are small 
compared to the depth of the fluid layer. Since growth 
factors of unstable disturbances are very large at 
realistic Rayleigh numbers, non-linear interactions 
become important almost instantaneously. In typical 
experiments [l&18], it is shown that non-linear inter- 
actions lead to sheet-like plumes in which colder and 
saltier fluid moves downward in relatively narrow 
regions, whereas warmer fluid is upwelled over relatively 
larger regions (with relatively smaller velocities). 

The analysis in this paper is not capable of descri- 
bing the finite amplitude convection. However, the 
linear stability analysis provides an adequate starting 
point to study plume formation (on laboratory scales) 
at large Rayleigh numbers. It is our opinion that since 
this type of buoyancy convection occurs on scales of 
millimetres to several kilometres in nature, the study 
of plume formation below ice on a laboratory scale 
may provide inherent characteristics of this con- 
vection (i.e. in particular the dependence of spatial 
scales on the main driving force) which may not be 
easily isolated for study in larger scale systems. 
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APPENDIX: VALUES OF PARAMETERS AND 
COEFFICIENTS USED IN THE CALCULATIONS 

A 1. Dimensional parameters 

K, = 1.44x lO~‘rn’s~’ i.,=5,30xlO~‘Jm ‘s-‘Km’ 

K, = 1.15x 10~6mZs~’ i, = 1.44x 10-l Jm- ’ SC’ Km’ 

D = 7.00 x 10-r” m2 s-’ o,, = er,, = 1.0 x 10’ Jm-* ss’ 

p, =pZ = l.OxlO’kgm~ ~=2,0xlO~‘kgm~‘s~ 

p,L=7.3x107JKm~ H = O.lOm. 

A2. Values of dimensionless parameters 

Pr=14 Bi=1.75 Le=200 j.=4 

x=7 m=-0.5 X=73. 

B. Co<ificients a, 

ES = (Erf’(rl))~‘(T,-m~(S,--cc,~fc(~)) 

x2 = (.W(OV’(T, -m,(S, -~7&fc(q)) 

(1, = .S,(Efc~;)-n-’ ‘ye’ exp(-$))-’ 

c~ = -L~‘{(RK,)-“*t(,~,exp(-rl’) 

+(~Jc,)-‘~~cQ& exp(-c’)} 

with [ = Q/K:‘, 1 = Q/K:‘~ and y = K,/D”~. 
For TA = -3°C T, = 1°C and S, = 10, the numerical 

values are : 

c(, = -19.62”C z> = 3.3O”C 

xi = -78.88 x4 = 6.48 x 10e5 rns~‘!‘. 


